A SOM-based Gradient-Free Deep Learning Method with Convergence Analysis

12 Jan 2021  ·  Shaosheng Xu, Jinde Cao, Yichao Cao, Tong Wang ·

As gradient descent method in deep learning causes a series of questions, this paper proposes a novel gradient-free deep learning structure. By adding a new module into traditional Self-Organizing Map and introducing residual into the map, a Deep Valued Self-Organizing Map network is constructed. And analysis about the convergence performance of such a deep Valued Self-Organizing Map network is proved in this paper, which gives an inequality about the designed parameters with the dimension of inputs and the loss of prediction.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here