A State-Space Model for Decoding Auditory Attentional Modulation from MEG in a Competing-Speaker Environment

NeurIPS 2014 Sahar AkramJonathan Z. SimonShihab A. ShammaBehtash Babadi

Humans are able to segregate auditory objects in a complex acoustic scene, through an interplay of bottom-up feature extraction and top-down selective attention in the brain. The detailed mechanism underlying this process is largely unknown and the ability to mimic this procedure is an important problem in artificial intelligence and computational neuroscience... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet