The stochastic dynamics of early epidemics: probability of establishment, initial growth rate, and infection cluster size at first detection

17 Nov 2020  ·  Peter Czuppon, Emmanuel Schertzer, François Blanquart, Florence Débarre ·

Emerging epidemics and local infection clusters are initially prone to stochastic effects that can substantially impact the epidemic trajectory. While numerous studies are devoted to the deterministic regime of an established epidemic, mathematical descriptions of the initial phase of epidemic growth are comparatively rarer. Here, we review existing mathematical results on the epidemic size over time, and derive new results to elucidate the early dynamics of an infection cluster started by a single infected individual. We show that the initial growth of epidemics that eventually take off is accelerated by stochasticity. These results are critical to improve early cluster detection and control. As an application, we compute the distribution of the first detection time of an infected individual in an infection cluster depending on the testing effort, and estimate that the SARS-CoV-2 variant of concern Alpha detected in September 2020 first appeared in the United Kingdom early August 2020. We also compute a minimal testing frequency to detect clusters before they exceed a given threshold size. These results improve our theoretical understanding of early epidemics and will be useful for the study and control of local infectious disease clusters.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here