A Stochastic Interpretation of Stochastic Mirror Descent: Risk-Sensitive Optimality

3 Apr 2019Navid AzizanBabak Hassibi

Stochastic mirror descent (SMD) is a fairly new family of algorithms that has recently found a wide range of applications in optimization, machine learning, and control. It can be considered a generalization of the classical stochastic gradient algorithm (SGD), where instead of updating the weight vector along the negative direction of the stochastic gradient, the update is performed in a "mirror domain" defined by the gradient of a (strictly convex) potential function... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.