A Study on Effects of Implicit and Explicit Language Model Information for DBLSTM-CTC Based Handwriting Recognition

31 Jul 2020Qi LiuLijuan WangQiang Huo

Deep Bidirectional Long Short-Term Memory (D-BLSTM) with a Connectionist Temporal Classification (CTC) output layer has been established as one of the state-of-the-art solutions for handwriting recognition. It is well known that the DBLSTM trained by using a CTC objective function will learn both local character image dependency for character modeling and long-range contextual dependency for implicit language modeling... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet