A Study on Graph-Structured Recurrent Neural Networks and Sparsification with Application to Epidemic Forecasting
We study epidemic forecasting on real-world health data by a graph-structured recurrent neural network (GSRNN). We achieve state-of-the-art forecasting accuracy on the benchmark CDC dataset. To improve model efficiency, we sparsify the network weights via transformed-$\ell_1$ penalty and maintain prediction accuracy at the same level with 70% of the network weights being zero.
PDF AbstractCode
Tasks
Datasets
Add Datasets
introduced or used in this paper
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here