A Study on Passage Re-ranking in Embedding based Unsupervised Semantic Search

State of the art approaches for (embedding based) unsupervised semantic search exploits either compositional similarity (of a query and a passage) or pair-wise word (or term) similarity (from the query and the passage). By design, word based approaches do not incorporate similarity in the larger context (query/passage), while compositional similarity based approaches are usually unable to take advantage of the most important cues in the context... In this paper we propose a new compositional similarity based approach, called variable centroid vector (VCVB), that tries to address both of these limitations. We also presents results using a different type of compositional similarity based approach by exploiting universal sentence embedding. We provide empirical evaluation on two different benchmarks. read more

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here