Paper

A study on the Interpretability of Neural Retrieval Models using DeepSHAP

A recent trend in IR has been the usage of neural networks to learn retrieval models for text based adhoc search. While various approaches and architectures have yielded significantly better performance than traditional retrieval models such as BM25, it is still difficult to understand exactly why a document is relevant to a query. In the ML community several approaches for explaining decisions made by deep neural networks have been proposed -- including DeepSHAP which modifies the DeepLift algorithm to estimate the relative importance (shapley values) of input features for a given decision by comparing the activations in the network for a given image against the activations caused by a reference input. In image classification, the reference input tends to be a plain black image. While DeepSHAP has been well studied for image classification tasks, it remains to be seen how we can adapt it to explain the output of Neural Retrieval Models (NRMs). In particular, what is a good "black" image in the context of IR? In this paper we explored various reference input document construction techniques. Additionally, we compared the explanations generated by DeepSHAP to LIME (a model agnostic approach) and found that the explanations differ considerably. Our study raises concerns regarding the robustness and accuracy of explanations produced for NRMs. With this paper we aim to shed light on interesting problems surrounding interpretability in NRMs and highlight areas of future work.

Results in Papers With Code
(↓ scroll down to see all results)