A Sub-Quadratic Exact Medoid Algorithm

23 May 2016  ·  James Newling, François Fleuret ·

We present a new algorithm, trimed, for obtaining the medoid of a set, that is the element of the set which minimises the mean distance to all other elements. The algorithm is shown to have, under certain assumptions, expected run time O(N^(3/2)) in R^d where N is the set size, making it the first sub-quadratic exact medoid algorithm for d>1. Experiments show that it performs very well on spatial network data, frequently requiring two orders of magnitude fewer distance calculations than state-of-the-art approximate algorithms. As an application, we show how trimed can be used as a component in an accelerated K-medoids algorithm, and then how it can be relaxed to obtain further computational gains with only a minor loss in cluster quality.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here