A Survey of Large Language Models in Psychotherapy: Current Landscape and Future Directions

16 Feb 2025  ·  Hongbin Na, Yining Hua, Zimu Wang, Tao Shen, Beibei Yu, Lilin Wang, Wei Wang, John Torous, Ling Chen ·

Mental health remains a critical global challenge, with increasing demand for accessible, effective interventions. Large language models (LLMs) offer promising solutions in psychotherapy by enhancing the assessment, diagnosis, and treatment of mental health conditions through dynamic, context-aware interactions. This survey provides a comprehensive overview of the current landscape of LLM applications in psychotherapy, highlighting the roles of LLMs in symptom detection, severity estimation, cognitive assessment, and therapeutic interventions. We present a novel conceptual taxonomy to organize the psychotherapy process into three core components: assessment, diagnosis, and treatment, and examine the challenges and advancements in each area. The survey also addresses key research gaps, including linguistic biases, limited disorder coverage, and underrepresented therapeutic models. Finally, we discuss future directions to integrate LLMs into a holistic, end-to-end psychotherapy framework, addressing the evolving nature of mental health conditions and fostering more inclusive, personalized care.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here