A System for Automated Image Editing from Natural Language Commands

3 Dec 2018  ·  Jacqueline Brixey, Ramesh Manuvinakurike, Nham Le, Tuan Lai, Walter Chang, Trung Bui ·

This work presents the task of modifying images in an image editing program using natural language written commands. We utilize a corpus of over 6000 image edit text requests to alter real world images collected via crowdsourcing. A novel framework composed of actions and entities to map a user's natural language request to executable commands in an image editing program is described. We resolve previously labeled annotator disagreement through a voting process and complete annotation of the corpus. We experimented with different machine learning models and found that the LSTM, the SVM, and the bidirectional LSTM-CRF joint models are the best to detect image editing actions and associated entities in a given utterance.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.