A Systematic Review of the Efforts and Hindrances of Modeling and Simulation of CAR T-cell Therapy

13 Jan 2021  ·  Ujwani Nukala, Marisabel Rodriguez Messan, Osman N. Yogurtcu, Xiaofei Wang, Hong Yang ·

Chimeric Antigen Receptor (CAR) T-cell therapy is an immunotherapy that has recently become highly instrumental in the fight against life-threatening diseases. A variety of modeling and computational simulation efforts have addressed different aspects of CAR T therapy, including T-cell activation, T- and malignant cell population dynamics, therapeutic cost-effectiveness strategies, and patient survival analyses. In this article, we present a systematic review of those efforts, including mathematical, statistical, and stochastic models employing a wide range of algorithms, from differential equations to machine learning. To the best of our knowledge, this is the first review of all such models studying CAR T therapy. In this review, we provide a detailed summary of the strengths, limitations, methodology, data used, and data lacking in current published models. This information may help in designing and building better models for enhanced prediction and assessment of the benefit-risk balance associated with novel CAR T therapies, as well as with the data collection essential for building such models.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here