A Theoretical Analysis of Learning with Noisily Labeled Data

8 Apr 2021  ·  Yi Xu, Qi Qian, Hao Li, Rong Jin ·

Noisy labels are very common in deep supervised learning. Although many studies tend to improve the robustness of deep training for noisy labels, rare works focus on theoretically explaining the training behaviors of learning with noisily labeled data, which is a fundamental principle in understanding its generalization. In this draft, we study its two phenomena, clean data first and phase transition, by explaining them from a theoretical viewpoint. Specifically, we first show that in the first epoch training, the examples with clean labels will be learned first. We then show that after the learning from clean data stage, continuously training model can achieve further improvement in testing error when the rate of corrupted class labels is smaller than a certain threshold; otherwise, extensively training could lead to an increasing testing error.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here