A Theoretical Analysis of Noisy Sparse Subspace Clustering on Dimensionality-Reduced Data

24 Oct 2016Yining WangYu-Xiang WangAarti Singh

Subspace clustering is the problem of partitioning unlabeled data points into a number of clusters so that data points within one cluster lie approximately on a low-dimensional linear subspace. In many practical scenarios, the dimensionality of data points to be clustered are compressed due to constraints of measurement, computation or privacy... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.