A Theory of Generative ConvNet

10 Feb 2016  ·  Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu ·

We show that a generative random field model, which we call generative ConvNet, can be derived from the commonly used discriminative ConvNet, by assuming a ConvNet for multi-category classification and assuming one of the categories is a base category generated by a reference distribution. If we further assume that the non-linearity in the ConvNet is Rectified Linear Unit (ReLU) and the reference distribution is Gaussian white noise, then we obtain a generative ConvNet model that is unique among energy-based models: The model is piecewise Gaussian, and the means of the Gaussian pieces are defined by an auto-encoder, where the filters in the bottom-up encoding become the basis functions in the top-down decoding, and the binary activation variables detected by the filters in the bottom-up convolution process become the coefficients of the basis functions in the top-down deconvolution process. The Langevin dynamics for sampling the generative ConvNet is driven by the reconstruction error of this auto-encoder. The contrastive divergence learning of the generative ConvNet reconstructs the training images by the auto-encoder. The maximum likelihood learning algorithm can synthesize realistic natural image patterns.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods