A Top-down Supervised Learning Approach to Hierarchical Multi-label Classification in Networks

23 Mar 2022  ·  Miguel Romero, Jorge Finke, Camilo Rocha ·

Node classification is the task of inferring or predicting missing node attributes from information available for other nodes in a network. This paper presents a general prediction model to hierarchical multi-label classification (HMC), where the attributes to be inferred can be specified as a strict poset. It is based on a top-down classification approach that addresses hierarchical multi-label classification with supervised learning by building a local classifier per class. The proposed model is showcased with a case study on the prediction of gene functions for Oryza sativa Japonica, a variety of rice. It is compared to the Hierarchical Binomial-Neighborhood, a probabilistic model, by evaluating both approaches in terms of prediction performance and computational cost. The results in this work support the working hypothesis that the proposed model can achieve good levels of prediction efficiency, while scaling up in relation to the state of the art.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here