A Tutorial on Concentration Bounds for System Identification

27 Jun 2019  ·  Nikolai Matni, Stephen Tu ·

We provide a brief tutorial on the use of concentration inequalities as they apply to system identification of state-space parameters of linear time invariant systems, with a focus on the fully observed setting. We draw upon tools from the theories of large-deviations and self-normalized martingales, and provide both data-dependent and independent bounds on the learning rate.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here