A Two-Layer Dialogue Framework For Authoring Social Bots

In this work, we explored creating a social bot for casual conversations. One of the major challenges in designing social bots is how to keep the user engaged. We experimented with a range of conversational activities, such as providing news and playing games, and strategies for controlling the dialogue flow. To support these experiments, we proposed a two-layer dialogue framework which allows for flexible reuse and reorganization of individual dialogue modules. The chat-bot was deployed as an Amazon Alexa Skill, and participated the Alexa social bot competition. Over 20k Alexa users interacted with and rated our bot between 4/1/2017 and 8/26/2017. We found that in general supporting a richer set of conversational activities is desirable, and the users are more in favor of having natural conversations over menu-based conversations. Our results also indicate that the lengths of interactions with the entertainment-oriented modules positively correspond to the users’ ratings of the bot. In Contrast, for modules that serve as an information provider, ie, news and news comments the lengths of the interactions do not predict the ratings.



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here