A unified approach to sentence segmentation of punctuated text in many languages

ACL 2021  ·  Rachel Wicks, Matt Post ·

The sentence is a fundamental unit of text processing. Yet sentences in the wild are commonly encountered not in isolation, but unsegmented within larger paragraphs and documents. Therefore, the first step in many NLP pipelines is \textit{sentence segmentation}. Despite its importance, this step is the subject of relatively little research. There are no standard test sets or even methods for evaluation, leaving researchers and engineers without a clear footing for evaluating and selecting models for the task. Existing tools have relatively small language coverage, and efforts to extend them to other languages are often ad hoc. We introduce a modern context-based modeling approach that provides a solution to the problem of segmenting punctuated text in many languages, and show how it can be trained on noisily-annotated data. We also establish a new 23-language multilingual evaluation set. Our approach exceeds high baselines set by existing methods on prior English corpora (WSJ and Brown corpora), and also performs well on average on our new evaluation set. We release our tool, ersatz, as open source.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here