Gaussian Mixture Reduction with Composite Transportation Divergence

19 Feb 2020  ·  Qiong Zhang, Archer Gong Zhang, Jiahua Chen ·

Gaussian mixtures are widely used for approximating density functions in various applications such as density estimation, belief propagation, and Bayesian filtering. These applications often utilize Gaussian mixtures as initial approximations that are updated recursively. A key challenge in these recursive processes stems from the exponential increase in the mixture's order, resulting in intractable inference. To overcome the difficulty, the Gaussian mixture reduction (GMR), which approximates a high order Gaussian mixture by one with a lower order, can be used. Although existing clustering-based methods are known for their satisfactory performance and computational efficiency, their convergence properties and optimal targets remain unknown. In this paper, we propose a novel optimization-based GMR method based on composite transportation divergence (CTD). We develop a majorization-minimization algorithm for computing the reduced mixture and establish its theoretical convergence under general conditions. Furthermore, we demonstrate that many existing clustering-based methods are special cases of ours, effectively bridging the gap between optimization-based and clustering-based techniques. Our unified framework empowers users to select the most appropriate cost function in CTD to achieve superior performance in their specific applications. Through extensive empirical experiments, we demonstrate the efficiency and effectiveness of our proposed method, showcasing its potential in various domains.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here