A Unified Optimization View on Generalized Matching Pursuit and Frank-Wolfe

21 Feb 2017  ·  Francesco Locatello, Rajiv Khanna, Michael Tschannen, Martin Jaggi ·

Two of the most fundamental prototypes of greedy optimization are the matching pursuit and Frank-Wolfe algorithms. In this paper, we take a unified view on both classes of methods, leading to the first explicit convergence rates of matching pursuit methods in an optimization sense, for general sets of atoms. We derive sublinear ($1/t$) convergence for both classes on general smooth objectives, and linear convergence on strongly convex objectives, as well as a clear correspondence of algorithm variants. Our presented algorithms and rates are affine invariant, and do not need any incoherence or sparsity assumptions.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here