A unified representation network for segmentation with missing modalities

19 Aug 2019  ·  Kenneth Lau, Jonas Adler, Jens Sjölund ·

Over the last few years machine learning has demonstrated groundbreaking results in many areas of medical image analysis, including segmentation. A key assumption, however, is that the train- and test distributions match. We study a realistic scenario where this assumption is clearly violated, namely segmentation with missing input modalities. We describe two neural network approaches that can handle a variable number of input modalities. The first is modality dropout: a simple but surprisingly effective modification of the training. The second is the unified representation network: a network architecture that maps a variable number of input modalities into a unified representation that can be used for downstream tasks such as segmentation. We demonstrate that modality dropout makes a standard segmentation network reasonably robust to missing modalities, but that the same network works even better if trained on the unified representation.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.