A Universal Discriminator for Zero-Shot Generalization

15 Nov 2022  ·  Haike Xu, Zongyu Lin, Jing Zhou, Yanan Zheng, Zhilin Yang ·

Generative modeling has been the dominant approach for large-scale pretraining and zero-shot generalization. In this work, we challenge this convention by showing that discriminative approaches perform substantially better than generative ones on a large number of NLP tasks. Technically, we train a single discriminator to predict whether a text sample comes from the true data distribution, similar to GANs. Since many NLP tasks can be formulated as selecting from a few options, we use this discriminator to predict the concatenation of input and which option has the highest probability of coming from the true data distribution. This simple formulation achieves state-of-the-art zero-shot results on the T0 benchmark, outperforming T0 by 16.0\%, 7.8\%, and 11.5\% respectively on different scales. In the finetuning setting, our approach also achieves new state-of-the-art results on a wide range of NLP tasks, with only 1/4 parameters of previous methods. Meanwhile, our approach requires minimal prompting efforts, which largely improves robustness and is essential for real-world applications. Furthermore, we also jointly train a generalized UD in combination with generative tasks, which maintains its advantage on discriminative tasks and simultaneously works on generative tasks.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here