Accelerated Alternating Projections for Robust Principal Component Analysis

15 Nov 2017  ·  HanQin Cai, Jian-Feng Cai, Ke Wei ·

We study robust PCA for the fully observed setting, which is about separating a low rank matrix $\boldsymbol{L}$ and a sparse matrix $\boldsymbol{S}$ from their sum $\boldsymbol{D}=\boldsymbol{L}+\boldsymbol{S}$. In this paper, a new algorithm, dubbed accelerated alternating projections, is introduced for robust PCA which significantly improves the computational efficiency of the existing alternating projections proposed in [Netrapalli, Praneeth, et al., 2014] when updating the low rank factor. The acceleration is achieved by first projecting a matrix onto some low dimensional subspace before obtaining a new estimate of the low rank matrix via truncated SVD. Exact recovery guarantee has been established which shows linear convergence of the proposed algorithm. Empirical performance evaluations establish the advantage of our algorithm over other state-of-the-art algorithms for robust PCA.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods