Accelerated Proximal Alternating Gradient-Descent-Ascent for Nonconvex Minimax Machine Learning

22 Dec 2021  ·  Ziyi Chen, Shaocong Ma, Yi Zhou ·

Alternating gradient-descent-ascent (AltGDA) is an optimization algorithm that has been widely used for model training in various machine learning applications, which aims to solve a nonconvex minimax optimization problem. However, the existing studies show that it suffers from a high computation complexity in nonconvex minimax optimization. In this paper, we develop a single-loop and fast AltGDA-type algorithm that leverages proximal gradient updates and momentum acceleration to solve regularized nonconvex minimax optimization problems. By leveraging the momentum acceleration technique, we prove that the algorithm converges to a critical point in nonconvex minimax optimization and achieves a computation complexity in the order of $\mathcal{O}(\kappa^{\frac{11}{6}}\epsilon^{-2})$, where $\epsilon$ is the desired level of accuracy and $\kappa$ is the problem's condition number. {Such a computation complexity improves the state-of-the-art complexities of single-loop GDA and AltGDA algorithms (see the summary of comparison in \Cref{table1})}. We demonstrate the effectiveness of our algorithm via an experiment on adversarial deep learning.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here