Accelerated Sparse Recovery Under Structured Measurements

ICLR 2019  ·  Ke Li, Jitendra Malik ·

Extensive work on compressed sensing has yielded a rich collection of sparse recovery algorithms, each making different tradeoffs between recovery condition and computational efficiency. In this paper, we propose a unified framework for accelerating various existing sparse recovery algorithms without sacrificing recovery guarantees by exploiting structure in the measurement matrix. Unlike fast algorithms that are specific to particular choices of measurement matrices where the columns are Fourier or wavelet filters for example, the proposed approach works on a broad range of measurement matrices that satisfy a particular property. We precisely characterize this property, which quantifies how easy it is to accelerate sparse recovery for the measurement matrix in question. We also derive the time complexity of the accelerated algorithm, which is sublinear in the signal length in each iteration. Moreover, we present experimental results on real world data that demonstrate the effectiveness of the proposed approach in practice.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here