Accelerating engineering design by automatic selection of simulation cases through Pool-Based Active Learning

3 Sep 2020  ·  J. H. Gaspar Elsas, N. A. G. Casaprima, I. F. M. Menezes ·

A common workflow for many engineering design problems requires the evaluation of the design system to be investigated under a range of conditions. These conditions usually involve a combination of several parameters. To perform a complete evaluation of a single candidate configuration, it may be necessary to perform hundreds to thousands of simulations. This can be computationally very expensive, particularly if several configurations need to be evaluated, as in the case of the mathematical optimization of a design problem. Although the simulations are extremely complex, generally, there is a high degree of redundancy in them, as many of the cases vary only slightly from one another. This redundancy can be exploited by omitting some simulations that are uninformative, thereby reducing the number of simulations required to obtain a reasonable approximation of the complete system. The decision of which simulations are useful is made through the use of machine learning techniques, which allow us to estimate the results of "yet-to-be-performed" simulations from the ones that are already performed. In this study, we present the results of one such technique, namely active learning, to provide an approximate result of an entire offshore riser design simulation portfolio from a subset that is 80% smaller than the original one. These results are expected to facilitate a significant speed-up in the offshore riser design.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here