Accessing tens-to-hundreds femtoseconds nuclear state lifetimes with low-energy binary heavy-ion reactions

9 Dec 2020  ·  M. Ciemala, S. Ziliani, F. C. L. Crespi, S. Leoni, B. Fornal, A. Maj, P. Bednarczyk, G. Benzoni, A. Bracco, C. Boiano, S. Bottoni, S. Brambilla, M. Bast, M. Beckers, T. Braunroth, F. Camera, N. Cieplicka-Orynczak, E. Clement, S. Coelli, O. Dorvaux, S. Erturk, G. De France, C. Fransen, A. Goldkuhle, J. Grebosz, M. N. Harakeh, L. W. Iskra, B. Jacquot, A. Karpov, M. Kicinska-Habior, Y. -H. Kim, M. Kmiecik, A. Lemasson, S. M. Lenzi, M. Lewitowicz, H. Li, I. Matea, K. Mazurek, C. Michelagnoli, M. Matejska-Minda, B. Million, C. Muller-Gatermann, V. Nanal, P. Napiorkowski, D. R. Napoli, R. Palit, M. Rejmund, Ch. Schmitt, M. Stanoiu, I. Stefan, E. Vardaci, B. Wasilewska, O. Wieland, M. Zieblinski, M. Zielinska ·

A novel Monte Carlo technique has been developed to determine lifetimes of excited states in the tens-to-hundreds femtoseconds range. The method is applied to low-energy heavy-ion binary reactions populating nuclei with complex velocity distributions. Its relevance is demonstrated in connection with the $^{18}$O(7.0 MeV/u) + $^{181}$Ta experiment, performed at GANIL with the AGATA+VAMOS+PARIS setup, to study neutron-rich O, C, N, ... nuclei. Excited states in $^{17}$O and $^{19}$O, with known lifetimes, are used to validate the method over the $\sim$20-400 fs lifetime-sensitivity range. Emphasis is given to the unprecedented position resolution provided by $\gamma$-tracking arrays, which turns out to be essential for reaching the required accuracy in Doppler-shift correction, at the basis of the detailed analysis of $\gamma$-ray lineshape and resulting state lifetime determination. The technique is anticipated to be an important tool for lifetime investigations in exotic neutron-rich nuclei, produced with intense ISOL-type beams.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Nuclear Experiment