Achievable Information Rates for Nonlinear Fiber Communication via End-to-end Autoencoder Learning

20 Apr 2018 Shen Li Christian Häger Nil Garcia Henk Wymeersch

Machine learning is used to compute achievable information rates (AIRs) for a simplified fiber channel. The approach jointly optimizes the input distribution (constellation shaping) and the auxiliary channel distribution to compute AIRs without explicit channel knowledge in an end-to-end fashion...

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet