Achieving Privacy in the Adversarial Multi-Armed Bandit

16 Jan 2017  ·  Aristide C. Y. Tossou, Christos Dimitrakakis ·

In this paper, we improve the previously best known regret bound to achieve $\epsilon$-differential privacy in oblivious adversarial bandits from $\mathcal{O}{(T^{2/3}/\epsilon)}$ to $\mathcal{O}{(\sqrt{T} \ln T /\epsilon)}$. This is achieved by combining a Laplace Mechanism with EXP3. We show that though EXP3 is already differentially private, it leaks a linear amount of information in $T$. However, we can improve this privacy by relying on its intrinsic exponential mechanism for selecting actions. This allows us to reach $\mathcal{O}{(\sqrt{\ln T})}$-DP, with a regret of $\mathcal{O}{(T^{2/3})}$ that holds against an adaptive adversary, an improvement from the best known of $\mathcal{O}{(T^{3/4})}$. This is done by using an algorithm that run EXP3 in a mini-batch loop. Finally, we run experiments that clearly demonstrate the validity of our theoretical analysis.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here