Acoustic-To-Word Model Without OOV

28 Nov 2017  ·  Jinyu Li, Guoli Ye, Rui Zhao, Jasha Droppo, Yifan Gong ·

Recently, the acoustic-to-word model based on the Connectionist Temporal Classification (CTC) criterion was shown as a natural end-to-end model directly targeting words as output units. However, this type of word-based CTC model suffers from the out-of-vocabulary (OOV) issue as it can only model limited number of words in the output layer and maps all the remaining words into an OOV output node. Therefore, such word-based CTC model can only recognize the frequent words modeled by the network output nodes. It also cannot easily handle the hot-words which emerge after the model is trained. In this study, we improve the acoustic-to-word model with a hybrid CTC model which can predict both words and characters at the same time. With a shared-hidden-layer structure and modular design, the alignments of words generated from the word-based CTC and the character-based CTC are synchronized. Whenever the acoustic-to-word model emits an OOV token, we back off that OOV segment to the word output generated from the character-based CTC, hence solving the OOV or hot-words issue. Evaluated on a Microsoft Cortana voice assistant task, the proposed model can reduce the errors introduced by the OOV output token in the acoustic-to-word model by 30%.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here