Action Classification and Highlighting in Videos

31 Aug 2017 Atousa Torabi Leonid Sigal

Inspired by recent advances in neural machine translation, that jointly align and translate using encoder-decoder networks equipped with attention, we propose an attentionbased LSTM model for human activity recognition. Our model jointly learns to classify actions and highlight frames associated with the action, by attending to salient visual information through a jointly learned soft-attention networks... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
Sigmoid Activation
Activation Functions
Tanh Activation
Activation Functions
LSTM
Recurrent Neural Networks