Active Contours with Group Similarity

Active contours are widely used in image segmentation. To cope with missing or misleading features in images, researchers have introduced various ways to model the prior of shapes and use the prior to constrain active contours. However, the shape prior is usually learnt from a large set of annotated data, which is not always accessible in practice. Moreover, it is often doubted that the existing shapes in the training set will be sufficient to model the new instance in the testing image. In this paper, we propose to use the group similarity of object shapes in multiple images as a prior to aid segmentation, which can be interpreted as an unsupervised approach of shape prior modeling. We show that the rank of the matrix consisting of multiple shapes is a good measure of the group similarity of the shapes, and the nuclear norm minimization is a simple and effective way to impose the proposed constraint on existing active contour models. Moreover, we develop a fast algorithm to solve the proposed model by using the accelerated proximal method. Experiments using echocardiographic image sequences acquired from acute canine experiments demonstrate that the proposed method can consistently improve the performance of active contour models and increase the robustness against image defects such as missing boundaries.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here