Paper

Active Learning for Skewed Data Sets

Consider a sequential active learning problem where, at each round, an agent selects a batch of unlabeled data points, queries their labels and updates a binary classifier. While there exists a rich body of work on active learning in this general form, in this paper, we focus on problems with two distinguishing characteristics: severe class imbalance (skew) and small amounts of initial training data... (read more)

Results in Papers With Code
(↓ scroll down to see all results)