Active Learning of Multi-Index Function Models

We consider the problem of actively learning \textit{multi-index} functions of the form $f(\vecx) = g(\matA\vecx)= \sum_{i=1}^k g_i(\veca_i^T\vecx)$ from point evaluations of $f$. We assume that the function $f$ is defined on an $\ell_2$-ball in $\Real^d$, $g$ is twice continuously differentiable almost everywhere, and $\matA \in \mathbb{R}^{k \times d}$ is a rank $k$ matrix, where $k \ll d$... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet