Active pooling design in group testing based on Bayesian posterior prediction

27 Jul 2020 Ayaka Sakata

In identifying infected patients in a population, group testing is an effective method to reduce the number of tests and correct the test errors. In the group testing procedure, tests are performed on pools of specimens collected from patients, where the number of pools is lower than that of patients... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet