Actor Critic with Differentially Private Critic

14 Oct 2019  ·  Jonathan Lebensold, William Hamilton, Borja Balle, Doina Precup ·

Reinforcement learning algorithms are known to be sample inefficient, and often performance on one task can be substantially improved by leveraging information (e.g., via pre-training) on other related tasks. In this work, we propose a technique to achieve such knowledge transfer in cases where agent trajectories contain sensitive or private information, such as in the healthcare domain. Our approach leverages a differentially private policy evaluation algorithm to initialize an actor-critic model and improve the effectiveness of learning in downstream tasks. We empirically show this technique increases sample efficiency in resource-constrained control problems while preserving the privacy of trajectories collected in an upstream task.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here