Adaptive and Compressive Beamforming Using Deep Learning for Medical Ultrasound

24 Jul 2019  ·  Shujaat Khan, Jaeyoung Huh, Jong Chul Ye ·

In ultrasound (US) imaging, various types of adaptive beamforming techniques have been investigated to improve the resolution and contrast-to-noise ratio of the delay and sum (DAS) beamformers. Unfortunately, the performance of these adaptive beamforming approaches degrade when the underlying model is not sufficiently accurate and the number of channels decreases. To address this problem, here we propose a deep learning-based beamformer to generate significantly improved images over widely varying measurement conditions and channel subsampling patterns. In particular, our deep neural network is designed to directly process full or sub-sampled radio-frequency (RF) data acquired at various subsampling rates and detector configurations so that it can generate high quality ultrasound images using a single beamformer. The origin of such input-dependent adaptivity is also theoretically analyzed. Experimental results using B-mode focused ultrasound confirm the efficacy of the proposed methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here