Deep Reinforcement Learning for Adaptive Caching in Hierarchical Content Delivery Networks

27 Feb 2019  ·  Alireza Sadeghi, Gang Wang, Georgios B. Giannakis ·

Caching is envisioned to play a critical role in next-generation content delivery infrastructure, cellular networks, and Internet architectures. By smartly storing the most popular contents at the storage-enabled network entities during off-peak demand instances, caching can benefit both network infrastructure as well as end users, during on-peak periods. In this context, distributing the limited storage capacity across network entities calls for decentralized caching schemes. Many practical caching systems involve a parent caching node connected to multiple leaf nodes to serve user file requests. To model the two-way interactive influence between caching decisions at the parent and leaf nodes, a reinforcement learning framework is put forth. To handle the large continuous state space, a scalable deep reinforcement learning approach is pursued. The novel approach relies on a deep Q-network to learn the Q-function, and thus the optimal caching policy, in an online fashion. Reinforcing the parent node with ability to learn-and-adapt to unknown policies of leaf nodes as well as spatio-temporal dynamic evolution of file requests, results in remarkable caching performance, as corroborated through numerical tests.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here