Adaptive Data Fusion for Multi-task Non-smooth Optimization

22 Oct 2022  ·  Henry Lam, Kaizheng Wang, Yuhang Wu, Yichen Zhang ·

We study the problem of multi-task non-smooth optimization that arises ubiquitously in statistical learning, decision-making and risk management. We develop a data fusion approach that adaptively leverages commonalities among a large number of objectives to improve sample efficiency while tackling their unknown heterogeneities. We provide sharp statistical guarantees for our approach. Numerical experiments on both synthetic and real data demonstrate significant advantages of our approach over benchmarks.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here