Adaptive Estimation of Random Vectors with Bandit Feedback: A mean-squared error viewpoint
We consider the problem of sequentially learning to estimate, in the mean squared error (MSE) sense, a Gaussian $K$-vector of unknown covariance by observing only $m < K$ of its entries in each round. We first establish a concentration bound for MSE estimation. We then frame the estimation problem with bandit feedback, and propose a variant of the successive elimination algorithm. We also derive a minimax lower bound to understand the fundamental limit on the sample complexity of this problem.
PDF AbstractTasks
Datasets
Add Datasets
introduced or used in this paper
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here