Adaptive Low-Nonnegative-Rank Approximation for State Aggregation of Markov Chains

14 Oct 2018  ·  Yaqi Duan, Mengdi Wang, Zaiwen Wen, Yaxiang Yuan ·

This paper develops a low-nonnegative-rank approximation method to identify the state aggregation structure of a finite-state Markov chain under an assumption that the state space can be mapped into a handful of meta-states. The number of meta-states is characterized by the nonnegative rank of the Markov transition matrix. Motivated by the success of the nuclear norm relaxation in low rank minimization problems, we propose an atomic regularizer as a convex surrogate for the nonnegative rank and formulate a convex optimization problem. Because the atomic regularizer itself is not computationally tractable, we instead solve a sequence of problems involving a nonnegative factorization of the Markov transition matrices by using the proximal alternating linearized minimization method. Two methods for adjusting the rank of factorization are developed so that local minima are escaped. One is to append an additional column to the factorized matrices, which can be interpreted as an approximation of a negative subgradient step. The other is to reduce redundant dimensions by means of linear combinations. Overall, the proposed algorithm very likely converges to the global solution. The efficiency and statistical properties of our approach are illustrated on synthetic data. We also apply our state aggregation algorithm on a Manhattan transportation data set and make extensive comparisons with an existing method.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here