Adaptive Multi-Teacher Multi-level Knowledge Distillation

6 Mar 2021  ·  Yuang Liu, Wei zhang, Jun Wang ·

Knowledge distillation~(KD) is an effective learning paradigm for improving the performance of lightweight student networks by utilizing additional supervision knowledge distilled from teacher networks. Most pioneering studies either learn from only a single teacher in their distillation learning methods, neglecting the potential that a student can learn from multiple teachers simultaneously, or simply treat each teacher to be equally important, unable to reveal the different importance of teachers for specific examples. To bridge this gap, we propose a novel adaptive multi-teacher multi-level knowledge distillation learning framework~(AMTML-KD), which consists two novel insights: (i) associating each teacher with a latent representation to adaptively learn instance-level teacher importance weights which are leveraged for acquiring integrated soft-targets~(high-level knowledge) and (ii) enabling the intermediate-level hints~(intermediate-level knowledge) to be gathered from multiple teachers by the proposed multi-group hint strategy. As such, a student model can learn multi-level knowledge from multiple teachers through AMTML-KD. Extensive results on publicly available datasets demonstrate the proposed learning framework ensures student to achieve improved performance than strong competitors.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods