Adaptive Multi-view Rule Discovery for Weakly-Supervised Compatible Products Prediction

28 Jun 2022  ·  Rongzhi Zhang, Rebecca West, Xiquan Cui, Chao Zhang ·

On e-commerce platforms, predicting if two products are compatible with each other is an important functionality to achieve trustworthy product recommendation and search experience for consumers. However, accurately predicting product compatibility is difficult due to the heterogeneous product data and the lack of manually curated training data. We study the problem of discovering effective labeling rules that can enable weakly-supervised product compatibility prediction. We develop AMRule, a multi-view rule discovery framework that can (1) adaptively and iteratively discover novel rulers that can complement the current weakly-supervised model to improve compatibility prediction; (2) discover interpretable rules from both structured attribute tables and unstructured product descriptions. AMRule adaptively discovers labeling rules from large-error instances via a boosting-style strategy, the high-quality rules can remedy the current model's weak spots and refine the model iteratively. For rule discovery from structured product attributes, we generate composable high-order rules from decision trees; and for rule discovery from unstructured product descriptions, we generate prompt-based rules from a pre-trained language model. Experiments on 4 real-world datasets show that AMRule outperforms the baselines by 5.98% on average and improves rule quality and rule proposal efficiency.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here