Adaptive Randomized Dimension Reduction on Massive Data

13 Apr 2015  ·  Gregory Darnell, Stoyan Georgiev, Sayan Mukherjee, Barbara E. Engelhardt ·

The scalability of statistical estimators is of increasing importance in modern applications. One approach to implementing scalable algorithms is to compress data into a low dimensional latent space using dimension reduction methods. In this paper we develop an approach for dimension reduction that exploits the assumption of low rank structure in high dimensional data to gain both computational and statistical advantages. We adapt recent randomized low-rank approximation algorithms to provide an efficient solution to principal component analysis (PCA), and we use this efficient solver to improve parameter estimation in large-scale linear mixed models (LMM) for association mapping in statistical and quantitative genomics. A key observation in this paper is that randomization serves a dual role, improving both computational and statistical performance by implicitly regularizing the covariance matrix estimate of the random effect in a LMM. These statistical and computational advantages are highlighted in our experiments on simulated data and large-scale genomic studies.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here