Adaptive Regret for Control of Time-Varying Dynamics

8 Jul 2020  ·  Paula Gradu, Elad Hazan, Edgar Minasyan ·

We consider the problem of online control of systems with time-varying linear dynamics. This is a general formulation that is motivated by the use of local linearization in control of nonlinear dynamical systems. To state meaningful guarantees over changing environments, we introduce the metric of {\it adaptive regret} to the field of control. This metric, originally studied in online learning, measures performance in terms of regret against the best policy in hindsight on {\it any interval in time}, and thus captures the adaptation of the controller to changing dynamics. Our main contribution is a novel efficient meta-algorithm: it converts a controller with sublinear regret bounds into one with sublinear {\it adaptive regret} bounds in the setting of time-varying linear dynamical systems. The main technical innovation is the first adaptive regret bound for the more general framework of online convex optimization with memory. Furthermore, we give a lower bound showing that our attained adaptive regret bound is nearly tight for this general framework.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here