Adaptive Relaxed ADMM: Convergence Theory and Practical Implementation

Many modern computer vision and machine learning applications rely on solving difficult optimization problems that involve non-differentiable objective functions and constraints. The alternating direction method of multipliers (ADMM) is a widely used approach to solve such problems. Relaxed ADMM is a generalization of ADMM that often achieves better performance, but its efficiency depends strongly on algorithm parameters that must be chosen by an expert user. We propose an adaptive method that automatically tunes the key algorithm parameters to achieve optimal performance without user oversight. Inspired by recent work on adaptivity, the proposed adaptive relaxed ADMM (ARADMM) is derived by assuming a Barzilai-Borwein style linear gradient. A detailed convergence analysis of ARADMM is provided, and numerical results on several applications demonstrate fast practical convergence.

PDF Abstract CVPR 2017 PDF CVPR 2017 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods