Adaptive Reward-Free Exploration

Reward-free exploration is a reinforcement learning setting studied by Jin et al. (2020), who address it by running several algorithms with regret guarantees in parallel. In our work, we instead give a more natural adaptive approach for reward-free exploration which directly reduces upper bounds on the maximum MDP estimation error. We show that, interestingly, our reward-free UCRL algorithm can be seen as a variant of an algorithm of Fiechter from 1994, originally proposed for a different objective that we call best-policy identification. We prove that RF-UCRL needs of order $({SAH^4}/{\varepsilon^2})(\log(1/\delta) + S)$ episodes to output, with probability $1-\delta$, an $\varepsilon$-approximation of the optimal policy for any reward function. This bound improves over existing sample-complexity bounds in both the small $\varepsilon$ and the small $\delta$ regimes. We further investigate the relative complexities of reward-free exploration and best-policy identification.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here