Adaptive Spatiotemporal Augmentation for Improving Dynamic Graph Learning

17 Jan 2025  ·  Xu Chu, Hanlin Xue, Bingce Wang, Xiaoyang Liu, Weiping Li, Tong Mo, Tuoyu Feng, Zhijie Tan ·

Dynamic graph augmentation is used to improve the performance of dynamic GNNs. Most methods assume temporal locality, meaning that recent edges are more influential than earlier edges. However, for temporal changes in edges caused by random noise, overemphasizing recent edges while neglecting earlier ones may lead to the model capturing noise. To address this issue, we propose STAA (SpatioTemporal Activity-Aware Random Walk Diffusion). STAA identifies nodes likely to have noisy edges in spatiotemporal dimensions. Spatially, it analyzes critical topological positions through graph wavelet coefficients. Temporally, it analyzes edge evolution through graph wavelet coefficient change rates. Then, random walks are used to reduce the weights of noisy edges, deriving a diffusion matrix containing spatiotemporal information as an augmented adjacency matrix for dynamic GNN learning. Experiments on multiple datasets show that STAA outperforms other dynamic graph augmentation methods in node classification and link prediction tasks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods