Adaptive Warm-Start MCTS in AlphaZero-like Deep Reinforcement Learning

13 May 2021  ·  Hui Wang, Mike Preuss, Aske Plaat ·

AlphaZero has achieved impressive performance in deep reinforcement learning by utilizing an architecture that combines search and training of a neural network in self-play. Many researchers are looking for ways to reproduce and improve results for other games/tasks. However, the architecture is designed to learn from scratch, tabula rasa, accepting a cold-start problem in self-play. Recently, a warm-start enhancement method for Monte Carlo Tree Search was proposed to improve the self-play starting phase. It employs a fixed parameter $I^\prime$ to control the warm-start length. Improved performance was reported in small board games. In this paper we present results with an adaptive switch method. Experiments show that our approach works better than the fixed $I^\prime$, especially for "deep," tactical, games (Othello and Connect Four). We conjecture that the adaptive value for $I^\prime$ is also influenced by the size of the game, and that on average $I^\prime$ will increase with game size. We conclude that AlphaZero-like deep reinforcement learning benefits from adaptive rollout based warm-start, as Rapid Action Value Estimate did for rollout-based reinforcement learning 15 years ago.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here